Cointime

Download App
iOS & Android

Why Does the Feasibility of ZkRollup Originate From the Computational Agent Idea of Zero-Knowledge Proof

Validated Media

In this article, we want to explore the concept of computational agents in zero-knowledge proof algorithms and their application in the zkRollup protocol. And discuss the trade-offs between the complexity of the prover and verifier workload and how the degree of computational proxy affects proof time and size.

The computational agent idea between Prover and Verifier is one of the core content of zero-knowledge proof. It is a tool to balance complexity trade-off between prover and verifier workload. The essential difference of different zero-knowledge proof algorithms lies in the different degree of computing agent; A high degree of proxy makes the calculation of verification easy, but it may make the complexity of proof high, resulting in a long proof time, or the size of the generated proof is large. On the contrary, a low degree of proxy will make the verifier more expensive.

Figure 1: Effect of computational agent degree on zero-knowledge proof

What Is a Computing Agent

With the expansion of applications and users on Ethereum, the degree of congestion on Ethernet mainnet keeps increasing, and using zkRollup for Layer2 expansion becomes a very attractive scheme. FOX is the project that focuses on using FOAKS algorithm for zkRollup. The feasibility of zkRollup essentially lies in the principle feasibility of the zero-knowledge proof algorithm used. In simple terms, the function of zero-knowledge proof algorithm is to make the prover prove something to the verifier without revealing any information about it. zkRollup is constructed to take advantage of this property, allowing Layer2 nodes to perform computations that would otherwise be done in Layer1, while providing a proof of correctness to the Layer1 node.

In a broader sense, the above process can be understood as that, due to the limited computing capacity of the verifier (Layer1 node), the computation of this part is delegated to the prover (Layer2 node). The prover completes the task and needs to return the result to the verifier. From this point of view, we can say that the zero-knowledge proof algorithm enables the realization of a "computational agent" that guarantees correctness. In the macro sense, this kind of computing agent example can be represented in the form of zkRollup application, and in the specific zero-knowledge algorithm, this kind of computing agent idea has various applications.

This article focuses on the validation calculations that FOAKS uses for Code-Switching, mentioned in Orion, to make the prover help the verifier perform, and how FOAKS applies this technique to recursion. This reduces the size of the proof and the overhead of the verifier.

Why Do You Need to Compute Agents?

From the practical point of view of the system, the computing power of the computing node is limited in many cases, or the computing resources are very precious. For example, all calculations on the Layer1 chain (including transfers and contract calls) need to be agreed upon by all nodes, and users have to pay high fees for this. Therefore, in this case, it is natural to "delegate" the computation that would otherwise be handled by the consensus node to the nodes down the chain, to avoid consuming the resources on the chain. This is the kind of off-chain computing that FOX is focusing on.

From the perspective of cryptography theory, in the GMR model, the prover is limited to have infinite computing power and the verifier has polynomial computing power. If the verifier also has infinite capacity, then the basic property of zero-knowledge proof cannot be satisfied. So naturally, tilting the computation in favor of the prover, making the prover take on more computation is a problem that many zero-knowledge prover algorithms design.

Of course, in order to achieve this, we need special skills.

Code Switching

This section describes the Code Switching techniques used in Orion. Both Orion and FOAKS use Brakedown as a polynomial commitment scheme, and Code Switching is a process named in Orion in which a prover performs validation calculations in place of a verifier.

In Understanding Brakedown, the Polynomial Commitment Protocol in FOAKS, we described how the verifier's verification is calculated as follows:

Now if you make the prover undertake this part of the calculation, the prover will perform the calculation and attach the proof value to prove that his calculation is correct.

This is done by writing the same equation as R1CS circuit:

The Virgo algorithm was then used to verify it.

The computing agent in FOAKS

A similar technique is used to compute agents in FOAKS, where it is worth noting that FOAKS implements non-interactive proofs thanks to the Fiat-Shamir heuristic technique. For more information, refer to the Fiat-Shamir Heuristic! How to Transform Interactive Proofs into Non-Interactive Proofs! . So FOAKS 'challenge generation is different from the code-switching method used by Orion, with a new equation added to the circuit:

Then the prover in FOAKS also generates computational proofs that are validated by the proxy verifier. For the verification process, FOAKS uses the algorithm itself to iterate, which is also the key content of FOAKS recursion. For details, see How to Design an Excellent Proof Recursion Scheme.

Through a certain number of iterations, the size of the proof can be compressed, thus greatly reducing the computational burden and communication complexity of the verifier. This is the significance of the zero-knowledge proof scheme FOAKS to the zkRollup of FOX.

Conclusion

The degree of computation proxy for the zero-knowledge proof algorithm used in zkRollup needs to be carefully designed and must be just right for it to achieve optimal overall efficiency. And FOAKS algorithm realizes the adjustable computation agent through recursion of its own iteration, which is a zero-knowledge proof algorithm specially designed for zkRollup.

  1. Orion: Xie, Tiancheng, Yupeng Zhang, and Dawn Song. "Orion: Zero knowledge proof with linear prover time." Advances in Cryptology–CRYPTO 2022: 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15–18, 2022, Proceedings, Part IV. Cham: Springer Nature Switzerland, 2022.

(Written by: Ivan Lin, CTO of Fox Tech, and Sputnik Meng, Chief scientist of Fox Tech)

Read more: https://tokeninsight.com/en/research/miscellaneous/why-does-the-feasibility-of-zkrollup-originate-from-the-computational-agent-idea-of-zero-knowledge-proof

Comments

All Comments

Recommended for you

  • American Bitcoin's Bitcoin reserves have increased by approximately 623 BTC in the past 7 days, bringing its current holdings to 4941 BTC.

    Emmett Gallic, a blockchain analyst who previously disclosed and analyzed the "1011 insider whale," posted on the X platform revealing updated data on the Bitcoin reserves of American Bitcoin, a crypto mining company supported by the Trump family. In the past seven days, they increased their holdings by about 623 BTC, of which approximately 80 BTC came from mining income and 542 BTC from strategic acquisitions in the open market. Currently, their total Bitcoin holdings have risen to 4,941 BTC, with a current market value of about 450 million USD.

  • The US spot Ethereum ETF saw a net outflow of $19.4 million yesterday.

    according to TraderT monitoring, the US spot Ethereum ETF had a net outflow of 19.4 million USD yesterday.

  • Listed companies, governments, ETFs, and exchanges collectively hold 5.94 million Bitcoins, representing 29.8% of the circulating supply.

    Glassnode analyzed the holdings of major types of Bitcoin holders as follows: Listed companies: about 1.07 million bitcoins, government agencies: about 620,000 bitcoins, US spot ETFs: about 1.31 million bitcoins, exchanges: about 2.94 million bitcoins. These institutions collectively hold about 5.94 million bitcoins, accounting for approximately 29.8% of the circulating supply, highlighting the trend of liquidity increasingly concentrating in institutions and custodians.

  • The Bank of Japan is reportedly planning further interest rate hikes; some officials believe the neutral interest rate will be higher than 1%.

    according to insiders, Bank of Japan officials believe that before the current rate hike cycle ends, interest rates are likely to rise above 0.75%, indicating that there may be more rate hikes after next week's increase. These insiders said that officials believe that even if rates rise to 0.75%, the Bank of Japan has not yet reached the neutral interest rate level. Some officials already consider 1% to still be below the neutral interest rate level. Insiders stated that even if the Bank of Japan updates its neutral rate estimates based on the latest data, it currently does not believe that this range will significantly narrow. Currently, the Bank of Japan's estimate for the nominal neutral interest rate range is about 1% to 2.5%. Insiders said that Bank of Japan officials also believe there may be errors in the upper and lower limits of this range itself. (Golden Ten)

  • OKX: Platform users can earn up to 4.10% annualized return by holding USDG.

    According to the official announcement, from 00:00 on December 11, 2025 to 00:00 on January 11, 2026 (UTC+8), users holding USDG in their OKX funding, trading, and lending accounts can automatically earn an annualized yield of up to 4.10% provided by the OKX platform, with the ability to withdraw or use it at any time, allowing both trading and wealth management simultaneously. Users can check their earnings anytime through the OKX APP (version 6.136.10 and above) - Assets - by clicking on USDG. Moving forward, the platform will continue to expand the application of USDG in more trading and wealth management scenarios.

  • The Federal Reserve will begin its Reserve Management Purchase (RMP) program today, purchasing $40 billion in Treasury bonds per month.

     according to the Federal Reserve Open Market Committee's decision on December 10, the Federal Reserve will start implementing the Reserve Management Purchase (RMP) program from December 12, purchasing a total of $40 billion in short-term Treasury securities in the secondary market.

  • Bitcoin treasury company Strategy's daily transaction volume has now surpassed that of payment giant Visa.

    according to market sources: the daily trading volume of Bitcoin treasury company Strategy (MSTR) has now surpassed the payment giant Visa.

  • The US spot Bitcoin ETF saw a net outflow of $78.35 million yesterday.

    according to Trader T's monitoring, the US spot Bitcoin ETF had a net outflow of $78.35 million yesterday.

  • JPMorgan Chase issues Galaxy short-term bonds on Solana network

     JPMorgan arranged and created, distributed, and settled a short-term bond on the Solana blockchain for Galaxy Digital Holdings LP, as part of efforts to enhance financial market efficiency using underlying cryptocurrency technology.

  • HSBC expects the Federal Reserve to refrain from cutting interest rates for the next two years.

    HSBC Securities predicts the Federal Reserve will maintain interest rates stable at the 3.5%-3.75% range set on Wednesday for the next two years. Previously, Federal Reserve policymakers lowered rates by 25 basis points with a split vote. The institution's U.S. economist Ryan Wang pointed out in a report on December 10 that Federal Reserve Chairman Jerome Powell was "open to the question of whether and when to further cut rates at next year's FOMC press conference." "We believe the FOMC will keep the federal funds rate target range unchanged at 3.50%-3.75% throughout 2026 and 2027, but as the economy evolves, as in the past, it is always necessary to pay close attention to the significant two-way risks facing this outlook."