Cointime

Download App
iOS & Android

Homomorphic Encryption

Current encryption technology is incredibly valuable. It underpins the Internet, lies at the heart of Web3, and empowers individuals to protect their personal information. However, traditional encryption schemes have a major limitation—data has to be decrypted before it can be analyzed and computed. Naturally, decrypting private data and exposing it to third parties undermines the reasons to encrypt data in the first place.

Homomorphic encryption overcomes this limitation by enabling encrypted data to be computed, meaning you can get cloud providers or web-based services to compute your data without ever having to expose your raw data to them. For organizations and individuals who value data privacy, homomorphic encryption is set to enable vastly higher levels of functionality—without compromising security.

What Is Homomorphic Encryption?

Outsource the computation of a function f(x) on data x to a server, without revealing the data to the server.

Homomorphic encryption is a cryptographic technique that allows computations to be performed on encrypted data—without requiring decryption. That means raw data can remain fully encrypted while it’s being processed, manipulated, and run through various algorithms and analyses. This enables you to keep data private while sharing it with third parties for computation. Given that current encryption methods cannot run computations on encrypted data, homomorphic encryption is set to unlock many exciting use cases.

Why is homomorphic encryption so transformative? Imagine you want to use a service that tests your genome to identify risk factors for genetic diseases. With most of today’s platforms, you’d be giving a third party complete access to your DNA, along with the medical conditions you may currently have or be at high risk for. Homomorphic encryption could enable you to access all the benefits of this service without having to expose a single sequence of your personal genome data.

Although homomorphic encryption was envisioned in 1978 by Rivest, Adleman, and Dertouzos, it wasn’t until 2009 that it was first fully constructed—a feat achieved by a brilliant MacArthur Fellowship recipient and computer scientist named Craig Gentry. Here’s how Gentry described homomorphic encryption, analogizing it to wearing special gloves that enable you to manipulate objects locked inside of a black box:

“Anybody can come and they can stick their hands inside the gloves and manipulate what’s inside the locked box. They can’t pull it out, but they can manipulate it; they can process it… Then they finish and the person with the secret key has to come and open it up—and only they can extract the finished product out of there.”

Homomorphic Encryption Use Cases

Computing AI algorithms on encrypted data is possible thanks to homomorphic encryption.

Secure Artificial Intelligence/Machine Learning

AI/ML algorithms can be trained on sensitive data without the raw data ever being exposed. This guaranteed data privacy can give large populations of individuals the confidence and security needed to share their data with AI projects, providing them with the huge volumes of raw data necessary to run AI algorithms that make a real-world impact.

Imagine a medical researcher who wants access to a hospital’s patient data so she can run an AI algorithm that identifies the optimal treatment for a rare form of cancer. Unfortunately, the hospital can’t share that data because it would breach their privacy standards. However, they could send their encrypted data to the researcher—enabling her to identify the optimal cancer treatment while keeping individual patient data completely private.

Secure Cloud Computation

Traditional cloud-based computation methods require access to unencrypted data to perform computations, which exposes sensitive data to cloud operators and any malicious actors that breach the network. With homomorphic encryption, cloud servers can compute directly on encrypted data and return encrypted results to the owner of the data, who can then decrypt them locally.

Regulatory Compliance

Data privacy regulations such as GDPR have created privacy challenges for businesses across the globe. Homomorphic encryption can expand a company’s ability to provide online services to citizens, whilst still meeting regulatory requirements and protecting user data.

Secure Voting

Voters can securely cast their votes without ever having to reveal who they voted for. This could make elections fairer and more transparent, and the enhanced privacy could encourage voter participation. A simple Paillier encryption scheme—a partially homomorphic encryption type—could be used to add up votes in a way that keeps them secret and allows third parties to verify the accuracy of the vote count.

Supply Chain Security

Many companies must share sensitive data with their contractors, vendors, and other third parties so they can coordinate their supply chains and operations. Even if these third parties never act maliciously, exposing raw data to a supply chain software system creates an attack vector. Homomorphic encryption can help companies mitigate these risks by using encrypted data within their backend systems, which can compute the necessary actions required for third parties without ever exposing any sensitive data.

Types of Homomorphic Encryption Schemes

Partially Homomorphic Encryption

The simplest type, partially homomorphic encryption, enables either additions or multiplications to be performed on the encrypted data, but not both. It can compute the product or sum of a dataset.

Somewhat Homomorphic Encryption

Somewhat homomorphic encryption allows for both addition and multiplication operations to be performed on the encrypted data, although it has some limitations. Specifically, the number of operations that can be performed is bounded and the accuracy of the computation may degrade as more operations are performed. This scheme can be useful for evaluating simple functions or performing basic statistical analyses.

Leveled Fully Homomorphic Encryption

A more advanced scheme, leveled fully homomorphic encryption can perform an arbitrary number of computations on encrypted data, as long as it has a pre-defined sequence of computations to be specified ahead of time. It can be used for complex computations such as machine learning (ML) algorithms and secure multi-party computation (MPC).

Fully Homomorphic Encryption (FHE)

The most advanced type, FHE allows any number of computations to be performed on encrypted data without a predefined sequence or limit. Any computation on plaintext data, including ML and MPC, can be evaluated. However, FHE schemes are currently computationally expensive, making them impractical for many use cases.

Conclusion

The impact of a new technology rises exponentially when combined with similarly transformative innovations. For example, blockchains gained much more functionality with the introduction of smart contracts, then oracle networks unlocked entire new design spaces across DeFi, NFTs, and insurance, and now zero-knowledge proofs are helping the Web3 ecosystem scale to support hundreds of millions of users.

Not only does homomorphic encryption unlock many exciting use cases on its own, it can also bring together two of the most transformative technologies in the world today—Web3 and AI. Oracle networks could play a key role in enabling AI algorithms to compute encrypted data stored on blockchains in a secure, reliable, and decentralized manner. While further research into homomorphic encryption is needed to make fully homomorphic encryption more cost-effective and scalable, homomorphic encryption is already enhancing data privacy and security, and this trend is set to continue.

Read more: https://blog.chain.link/homomorphic-encryption/

Comments

All Comments

Recommended for you

  • American Bitcoin's Bitcoin reserves have increased by approximately 623 BTC in the past 7 days, bringing its current holdings to 4941 BTC.

    Emmett Gallic, a blockchain analyst who previously disclosed and analyzed the "1011 insider whale," posted on the X platform revealing updated data on the Bitcoin reserves of American Bitcoin, a crypto mining company supported by the Trump family. In the past seven days, they increased their holdings by about 623 BTC, of which approximately 80 BTC came from mining income and 542 BTC from strategic acquisitions in the open market. Currently, their total Bitcoin holdings have risen to 4,941 BTC, with a current market value of about 450 million USD.

  • The US spot Ethereum ETF saw a net outflow of $19.4 million yesterday.

    according to TraderT monitoring, the US spot Ethereum ETF had a net outflow of 19.4 million USD yesterday.

  • Listed companies, governments, ETFs, and exchanges collectively hold 5.94 million Bitcoins, representing 29.8% of the circulating supply.

    Glassnode analyzed the holdings of major types of Bitcoin holders as follows: Listed companies: about 1.07 million bitcoins, government agencies: about 620,000 bitcoins, US spot ETFs: about 1.31 million bitcoins, exchanges: about 2.94 million bitcoins. These institutions collectively hold about 5.94 million bitcoins, accounting for approximately 29.8% of the circulating supply, highlighting the trend of liquidity increasingly concentrating in institutions and custodians.

  • The Bank of Japan is reportedly planning further interest rate hikes; some officials believe the neutral interest rate will be higher than 1%.

    according to insiders, Bank of Japan officials believe that before the current rate hike cycle ends, interest rates are likely to rise above 0.75%, indicating that there may be more rate hikes after next week's increase. These insiders said that officials believe that even if rates rise to 0.75%, the Bank of Japan has not yet reached the neutral interest rate level. Some officials already consider 1% to still be below the neutral interest rate level. Insiders stated that even if the Bank of Japan updates its neutral rate estimates based on the latest data, it currently does not believe that this range will significantly narrow. Currently, the Bank of Japan's estimate for the nominal neutral interest rate range is about 1% to 2.5%. Insiders said that Bank of Japan officials also believe there may be errors in the upper and lower limits of this range itself. (Golden Ten)

  • OKX: Platform users can earn up to 4.10% annualized return by holding USDG.

    According to the official announcement, from 00:00 on December 11, 2025 to 00:00 on January 11, 2026 (UTC+8), users holding USDG in their OKX funding, trading, and lending accounts can automatically earn an annualized yield of up to 4.10% provided by the OKX platform, with the ability to withdraw or use it at any time, allowing both trading and wealth management simultaneously. Users can check their earnings anytime through the OKX APP (version 6.136.10 and above) - Assets - by clicking on USDG. Moving forward, the platform will continue to expand the application of USDG in more trading and wealth management scenarios.

  • The Federal Reserve will begin its Reserve Management Purchase (RMP) program today, purchasing $40 billion in Treasury bonds per month.

     according to the Federal Reserve Open Market Committee's decision on December 10, the Federal Reserve will start implementing the Reserve Management Purchase (RMP) program from December 12, purchasing a total of $40 billion in short-term Treasury securities in the secondary market.

  • Bitcoin treasury company Strategy's daily transaction volume has now surpassed that of payment giant Visa.

    according to market sources: the daily trading volume of Bitcoin treasury company Strategy (MSTR) has now surpassed the payment giant Visa.

  • The US spot Bitcoin ETF saw a net outflow of $78.35 million yesterday.

    according to Trader T's monitoring, the US spot Bitcoin ETF had a net outflow of $78.35 million yesterday.

  • JPMorgan Chase issues Galaxy short-term bonds on Solana network

     JPMorgan arranged and created, distributed, and settled a short-term bond on the Solana blockchain for Galaxy Digital Holdings LP, as part of efforts to enhance financial market efficiency using underlying cryptocurrency technology.

  • HSBC expects the Federal Reserve to refrain from cutting interest rates for the next two years.

    HSBC Securities predicts the Federal Reserve will maintain interest rates stable at the 3.5%-3.75% range set on Wednesday for the next two years. Previously, Federal Reserve policymakers lowered rates by 25 basis points with a split vote. The institution's U.S. economist Ryan Wang pointed out in a report on December 10 that Federal Reserve Chairman Jerome Powell was "open to the question of whether and when to further cut rates at next year's FOMC press conference." "We believe the FOMC will keep the federal funds rate target range unchanged at 3.50%-3.75% throughout 2026 and 2027, but as the economy evolves, as in the past, it is always necessary to pay close attention to the significant two-way risks facing this outlook."