Cointime

Download App
iOS & Android

ZKP Series: Principles and Implementation of Extensibility Attacks on Groth16 Proofs

Preface

In our previous article, we reviewed the technical features of mainstream ZKP implementation solutions and mentioned the potential extensibility risks associated with certain ZKP algorithms. In this article, we will continue to demonstrate the attack principles and defense methods from a practical perspective.

Vulnerability Overview

Extensibility attacks on ZKP refer to the ability of an adversary to generate a new valid proof without knowledge of the witness, given an existing valid proof.

Not all proof systems are susceptible to extensibility attacks. In fact, this problem currently exists mainly in the Groth16 proof system. So why do we still insist on using Groth16, given that there are so many other proof systems available? The truth is that the proofs generated by Groth16 are extremely small in size and very fast to verify. In the context of blockchain, where computational costs are high, using Groth16 seems to be the most ideal choice.

What risks does extensibility vulnerability bring? Let’s imagine a deposit system that uses ZKP proofs submitted by users to verify their identity. Once verified, users can make withdrawals. Since the verification process of this system is public, anyone can obtain the proof. If the proof value itself is used as a withdrawal record and the proof is obtained and transformed, it can be used for multiple withdrawals. The exploitation of this vulnerability depends on the specific scenario, but we can see that extensibility vulnerability primarily brings the risk of double-spending.

Mathematical Principles

To understand the attack principles, we first need to understand the algorithm, which requires some knowledge of cryptography. Interested readers can find information on the Groth16 algorithm on their own. Here, we will focus on the root cause of the vulnerability: the verification function.

Let’s take a look at the formula for the verification function:

Without going into a detailed explanation of each individual variable, it may be difficult to fully comprehend the formula’s meaning. However, an extensive introduction is not necessarily required. By simply remembering the “A * B” on the left side of the formula, we can begin to unravel its intricacies and apply mathematical magic. The following incantation is all it takes:

This is just one of the simpler construction methods, and there is another construction method, which we will not elaborate on here, as we have already gathered what we needed.

Implementation

With the above formula, we can execute the extension of Groth16 proofs in implementation. To forge a proof for a target object, we can obtain its proof, for example:

{  pi_a: [    '17566212007750634279332191898019870443899908963707812937725971557556988121113',    '13653824972036797689593667463260040326059024360787769597142078414930263663703',    '1'  ],  pi_b: [    [      '14906111038352923510344648516413952434168552622848767570599399834157918236589',      '15289017543994496306320102143103349779456992442925111629326024552687168229256'    ],    [      '18841235948006283310515755114762069779103481848435391875780416574913227842443',      '6835281862874020275059416795628130939104366467185014410026268177455413514889'    ],    [ '1', '0' ]  ],  pi_c: [    '21641806348662631815866837255154640732047306895903168385641666607914783128458',    '2082587994352117459125871298218148663854896572836176277773049196516560449682',    '1'  ],  protocol: 'groth16',  curve: 'bn128'}

Let’s take a look at a proof like this: pi_a, pi_b, pi_c are the A, B, C described in the formula above. This proof uses the BN128 curve, so we need to find a development library that supports the BN128 curve. Here, we choose ffjavascript, which is a finite field library based on JavaScript that supports the BN128 and BLS12381 curves.

First, we arbitrarily construct an element on the field and its inverse element:

const X = F.e("123456");const invX = F.inv(X);

Then, we multiply them together separately. The core code is as follows:

const A = curve.G1.fromObject(proof.pi_a);const B = curve.G2.fromObect(proof.pi_b);new_pi_a = curve.G1.timesScalar(A, X);  //A'=x*Anew_pi_b = curve.G2.timesScalar(B, invX);  //B'=x^{-1}*B

Finally, we replace the original proof with new_pi_a and new_pi_b to obtain a new proof:

{  pi_a: [    '6515337738552169645617263495374285821912767490069335826295120714428977813009',    '10671874016637483602721966808912960491553808325993800847672325376634242358838',    '1'  ],  pi_b: [    [      '20523135654483520737281403147507843211011765855706506084021355785019229409285',      '4032527486736971273144842057682931136787425732029780739716144011227563817375'    ],    [      '9389285843105460816015935120908213706233585149018458753845466963847282799614',      '7207137211649923819130654483456848273137049778520784010268635580504303221849'    ],    [ '1', '0' ]  ],  pi_c: [    '21641806348662631815866837255154640732047306895903168385641666607914783128458',    '2082587994352117459125871298218148663854896572836176277773049196516560449682',    '1'  ],  protocol: 'groth16',  curve: 'bn128'}

By this point, we have successfully constructed a new proof. When we place this proof into the verification function, we can see that it can pass the verification.

Prevention

How can we prevent Groth16 extensibility attacks? Here are four methods:

  1. Sign the proof, and have the verifier validate the signature along with the proof.
  2. Add nullifier values in the public inputs of the circuit, as TornadoCash does, to ensure that a proof can only correspond to a public input once.
  3. Add the identity information of the prover (such as Ethereum’s msg.sender) to the public inputs of the circuit, allowing the verifier to verify the prover’s identity.
  4. Use other proof systems, as discussed in our previous article.

Conclusion

In conclusion, Groth16 is vulnerable to extensibility attacks, as new proofs can be forged through simple calculations. In practice, it is important to take measures to prevent double-spending attacks.

Comments

All Comments

Recommended for you

  • American Bitcoin's Bitcoin reserves have increased by approximately 623 BTC in the past 7 days, bringing its current holdings to 4941 BTC.

    Emmett Gallic, a blockchain analyst who previously disclosed and analyzed the "1011 insider whale," posted on the X platform revealing updated data on the Bitcoin reserves of American Bitcoin, a crypto mining company supported by the Trump family. In the past seven days, they increased their holdings by about 623 BTC, of which approximately 80 BTC came from mining income and 542 BTC from strategic acquisitions in the open market. Currently, their total Bitcoin holdings have risen to 4,941 BTC, with a current market value of about 450 million USD.

  • The US spot Ethereum ETF saw a net outflow of $19.4 million yesterday.

    according to TraderT monitoring, the US spot Ethereum ETF had a net outflow of 19.4 million USD yesterday.

  • Listed companies, governments, ETFs, and exchanges collectively hold 5.94 million Bitcoins, representing 29.8% of the circulating supply.

    Glassnode analyzed the holdings of major types of Bitcoin holders as follows: Listed companies: about 1.07 million bitcoins, government agencies: about 620,000 bitcoins, US spot ETFs: about 1.31 million bitcoins, exchanges: about 2.94 million bitcoins. These institutions collectively hold about 5.94 million bitcoins, accounting for approximately 29.8% of the circulating supply, highlighting the trend of liquidity increasingly concentrating in institutions and custodians.

  • The Bank of Japan is reportedly planning further interest rate hikes; some officials believe the neutral interest rate will be higher than 1%.

    according to insiders, Bank of Japan officials believe that before the current rate hike cycle ends, interest rates are likely to rise above 0.75%, indicating that there may be more rate hikes after next week's increase. These insiders said that officials believe that even if rates rise to 0.75%, the Bank of Japan has not yet reached the neutral interest rate level. Some officials already consider 1% to still be below the neutral interest rate level. Insiders stated that even if the Bank of Japan updates its neutral rate estimates based on the latest data, it currently does not believe that this range will significantly narrow. Currently, the Bank of Japan's estimate for the nominal neutral interest rate range is about 1% to 2.5%. Insiders said that Bank of Japan officials also believe there may be errors in the upper and lower limits of this range itself. (Golden Ten)

  • OKX: Platform users can earn up to 4.10% annualized return by holding USDG.

    According to the official announcement, from 00:00 on December 11, 2025 to 00:00 on January 11, 2026 (UTC+8), users holding USDG in their OKX funding, trading, and lending accounts can automatically earn an annualized yield of up to 4.10% provided by the OKX platform, with the ability to withdraw or use it at any time, allowing both trading and wealth management simultaneously. Users can check their earnings anytime through the OKX APP (version 6.136.10 and above) - Assets - by clicking on USDG. Moving forward, the platform will continue to expand the application of USDG in more trading and wealth management scenarios.

  • The Federal Reserve will begin its Reserve Management Purchase (RMP) program today, purchasing $40 billion in Treasury bonds per month.

     according to the Federal Reserve Open Market Committee's decision on December 10, the Federal Reserve will start implementing the Reserve Management Purchase (RMP) program from December 12, purchasing a total of $40 billion in short-term Treasury securities in the secondary market.

  • Bitcoin treasury company Strategy's daily transaction volume has now surpassed that of payment giant Visa.

    according to market sources: the daily trading volume of Bitcoin treasury company Strategy (MSTR) has now surpassed the payment giant Visa.

  • The US spot Bitcoin ETF saw a net outflow of $78.35 million yesterday.

    according to Trader T's monitoring, the US spot Bitcoin ETF had a net outflow of $78.35 million yesterday.

  • JPMorgan Chase issues Galaxy short-term bonds on Solana network

     JPMorgan arranged and created, distributed, and settled a short-term bond on the Solana blockchain for Galaxy Digital Holdings LP, as part of efforts to enhance financial market efficiency using underlying cryptocurrency technology.

  • HSBC expects the Federal Reserve to refrain from cutting interest rates for the next two years.

    HSBC Securities predicts the Federal Reserve will maintain interest rates stable at the 3.5%-3.75% range set on Wednesday for the next two years. Previously, Federal Reserve policymakers lowered rates by 25 basis points with a split vote. The institution's U.S. economist Ryan Wang pointed out in a report on December 10 that Federal Reserve Chairman Jerome Powell was "open to the question of whether and when to further cut rates at next year's FOMC press conference." "We believe the FOMC will keep the federal funds rate target range unchanged at 3.50%-3.75% throughout 2026 and 2027, but as the economy evolves, as in the past, it is always necessary to pay close attention to the significant two-way risks facing this outlook."